13 research outputs found

    An event based topic learning pipeline for neuroimaging literature mining

    Get PDF
    Neuroimaging text mining extracts knowledge from neuroimaging texts and has received widespread attention. Topic learning is an important research focus of neuroimaging text mining. However, current neuroimaging topic learning researches mainly used traditional probability topic models to extract topics from literature and cannot obtain high-quality neuroimaging topics. The existing topic learning methods also cannot meet the requirements of topic learning oriented to full-text neuroimaging literature. In this paper, three types of neuroimaging research topic events are defined to describe the process and result of neuroimaging researches. An event based topic learning pipeline, called neuroimaging Event-BTM, is proposed to realize topic learning from full-text neuroimaging literature. The experimental results on the PLoS One data set show that the accuracy and completeness of the proposed method are significantly better than the existing main topic learning methods

    Introducing the CLEF 2020 HIPE Shared Task: Named Entity Recognition and Linking on Historical Newspapers

    No full text
    Since its introduction some twenty years ago, named entity (NE) processing has become an essential component of virtually any text mining application and has undergone major changes. Recently, two main trends characterise its developments: the adoption of deep learning architectures and the consideration of textual material originating from historical and cultural heritage collections. While the former opens up new opportunities, the latter introduces new challenges with heterogeneous, historical and noisy inputs. If NE processing tools are increasingly being used in the context of historical documents, performance values are below the ones on contemporary data and are hardly comparable. In this context, this paper introduces the CLEF 2020 Evaluation Lab HIPE (Identifying Historical People, Places and other Entities) on named entity recognition and linking on diachronic historical newspaper material in French, German and English. Our objective is threefold: strengthening the robustness of existing approaches on non-standard inputs, enabling performance comparison of NE processing on historical texts, and, in the long run, fostering efficient semantic indexing of historical documents in order to support scholarship on digital cultural heritage collections

    Semantic Fake News Detection: A Machine Learning Perspective

    No full text
    Fake news detection is a difficult problem due to the nuances of language. Understanding the reasoning behind certain fake items implies inferring a lot of details about the various actors involved. We believe that the solution to this problem should be a hybrid one, combining machine learning, semantics and natural language processing. We introduce a new semantic fake news detection method built around relational features like sentiment, entities or facts extracted directly from text. Our experiments show that by adding semantic features the accuracy of fake news classification improves significantly

    Recent advances in Swedish and Spanish medical entity recognition in clinical texts using deep neural approaches

    Get PDF
    Background Text mining and natural language processing of clinical text, such as notes from electronic health records, requires specific consideration of the specialized characteristics of these texts. Deep learning methods could potentially mitigate domain specific challenges such as limited access to in-domain tools and data sets. Methods A bi-directional Long Short-Term Memory network is applied to clinical notes in Spanish and Swedish for the task of medical named entity recognition. Several types of embeddings, both generated from in-domain and out-of-domain text corpora, and a number of generation and combination strategies for embeddings have been evaluated in order to investigate different input representations and the influence of domain on the final results. Results For Spanish, a micro averaged F1-score of 75.25 was obtained and for Swedish, the corresponding score was 76.04. The best results for both languages were achieved using embeddings generated from in-domain corpora extracted from electronic health records, but embeddings generated from related domains were also found to be beneficial. Conclusions A recurrent neural network with in-domain embeddings improved the medical named entity recognition compared to shallow learning methods, showing this combination to be suitable for entity recognition in clinical text for both languages.The publication cost of this article was funded by Stockholm University Librar
    corecore